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Quantum Computing

Evolution of HPC Technology in the Last 50 Years and
Al

1970s-1980s: Vector Supercomputers (Cray)
1990s-2000s: Parallel computing and distributed systems
2010s: Rise of GPUs, cloud HPC

2020s and beyond: Al acceleration, guantum computing
explorations

Accelerated Clusters

SLATE (2020’s)
(DM and Heterogeneous arch)

x86 Linux Clusters

PLASMA / MAGMA (2010’s)

Massively Parallel (Many-core friendly & GPUs)

Processors
TMC CM-5 ScaLAPACK (2000’s)
(Distributed Memory)

Distributed

Shared Memory Memory PVM and MPI
SGI Power Challenge (Blocking, cache friendly)

Vector Supercomputers

Cray-1 Level 1 Basic Linear Algebra

Subprograms (BLAS) Level 2 & 3 BLAS - ATLAS

EISPACK (1970’s) NATS Project LINPACK (1980’s)

(Translation of Algol to F66) (Vector operations) Evolving Software and Algorithms

Following Hardware Developments 2



e
An ACCIdentaI BenChmarker Appendix B of the Linpack Users’ Guide

LINPACK was an NSF Project w/ ANL, UNM, UM, & UCSD Designed to he|p users estimate the
We worked independently and came to Argonne in the
summers

Top 23 List from 1977
Performance of solving Ax=b using LINPACK software

run time for solving systems of equation
using the Linpack software.

First benchmark report from 1977;
Cray 1 to DEC PDP-10
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<« LINPACK Benchmark — Top500

e Since 1977 I maintained a LINPACK
Benchmark list.

* Hans Meuer and Erich Strohmaier had a list of
fastest computers ranked by peak performance.

* Since 1993 listing of the 500 most powerful
computers using 64-bit floating point
arithmetic.

* Yardstick: Performance for

Ax=b, dense problem
Maintained and updated twice a year:

SC‘xy in the States in November 500
Meeting in Germany in June The List.

TPP performance

Rate

Size




e TOP50O0 list began in 1993

* 65 systems used Intel’s i860 architecture
* Remainder had specialized architectures,

mainly vector based

Most of the HPC systems
were specially built for
computational science

applications
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Major paradigm shift
Attach of the Killer Micros
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Scientific High Performance Computing based on Commodity

PFOCESSO 'S Major paradigm shift
Attach of the Killer Micros

e TOP500 list began in 1993

* 65 systems used Intel’s i860 architecture

* Remainder had specialized architectures,
mainly vector based

Number of Systems Using X86 Architecture on the Top500

500
e Today’s TOP500 list r5o mimel o TAD
* 59% of systems used Intel processors ,,,
* Another 34% used AMD processors 5,
300
* 93% of the systems use x86-64 250 > Biced
architecture 200 NIEQC FUJITSU
* Many use GPU accelerators 150 HITACHI
100 M Intel W AMD
50
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Today, Our HPC Systems are Based on Commodity Parts

« Commodity Processors

= 93% of the Top500 system use X86 (Intel & AMD) instruction set
Commodity Accelerators

= 92% of accelerated systems use NVIDIA
Commodity Interconnect

= 85% of the Top500 systems use Ethernet or Infiniband

Commodity OS
= 100% of the Top500 systems run on Linux

Unlike the HPC Community, the Hyperscalers (Cloud Providers)
= They are building their processors, accelerators, and interconnects



Alibaba

* CIPU, 128 core ARM based
* Alibaba’s Elastic Compute Service

AWS Graviton4
* 96 ARM cores, 7 chiplet design
e ~100 billion transistors, DDR5 memory

Google TPU7

e 2X TPU3 performance
* 4096 units per “pod”
* Reconfigurable optical  rose

hips) 4096 8960
interconnect o

Bandwidth/
Capacity

TPU v5p

32GB 95 GB
@ 1.2 TBps HBM @ 2.8 TBps HBM

Peak Fl
i 275 TFLOPS 459 TFLOPS

Microsoft Azure
* Project Catapult/Brainwave FPGA accelerator
* Cobalt 100 (128 Neoverse N2 ARMV9 cores)
* Maial00 (Athena) Al accelerator
* S$10B+ OpenAl investment/S80B in data centers

Ironwood

9216

192 GB
@ 7.4 TBps HBM

4614 TFLOPS

® 9l

OpenAl

@erebras

SambaNovar

S YSTEMS




Billons S (USD)

Market Capitalizations

November 2, 2025
One measure of market influence

6000
5000
4000
2000 "Traditional” Computing
(~$2.5T aggregate)
A
2000 \
1000 I
0 _ — — — | [ | l [ |
'7)‘6(0%’2.4) Q@'V Q@«
%% o, © %o %, b % S, 0,
ST 02 22 %
2 %

—
Hewlett Packard (|nte|> E?—E__—?(@ AMDZX

Enterprise



Billons S (USD)
w
o
3

Market Capitalizations

November 2, 2025
One measure of market influence

Control of the computing ecosystem
Trillion+ S (USD) companies
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Market Capitalizations

November 2, 2025
One measure of market influence

Control of the computing ecosystem
Trillion+ S (USD) companies

A
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N
e June 2025: The TOP 10 Systems (54% of the Total Performance of Top500)
. Rmax % of | Power | GFlops/
Rank Site Computer Country Cores [Pflops] | Peak | [MW]| Wart
DOE / NNSA E/C'ap/'fal Tflop/s T0p500 June 2025
1 295 | 589
LLNL GH. 1500000 o
° apitan
DOE / 0S Frontie
2 Oak Ridge Nat Lab 2 6p, 1600000 246 | 550
DOE / Os Auror 1400000 :

g Argonne Nat Lab Intel L p Frontiet 367 | 261
1200000

4 EuroHPC/FZL s 131 | 605
1000000 @ Aurora

b
5 Microsoft, Azure Cloud 800000 =
o HPE cn 600000 .
6 Eni Sp.A Jupiter 8.46 56.5
4 26H :.Eagle
400000
RIKEN Center for F ¢

7 Computational Science 299 | 148

200000 i
Swiss National Alps, HPt Rank
8 Supercomputing Center CSCS 0 Z1z 610
0 50 100 150 200 250 300 350 400 450 500
LUML, rre cray cacooa, amu 5~ crre o4e,
? Sopgs 2 GHz, AMD Instinct MIZ50X, Slingshot 11 2752704 | 380 | 71 | 710 | 523
Leonardo, BullSequana XH2000, Xeon Platinum 8358
10 EuroHPC/CINECA 32¢, 2.66Hz, 1,824,768 241, 78 7.49 322
NVIDIA A100 (108C), Quad-rail NVIDIA HDR100




Performance Development of HPC over the Last 33
Years from_the Top500

10 Eflop/s El Capa}taénF,ILLNL/
. op/s
1 Eflop/s
100 Pflop/s '
10 Pflop/s
1 Pflop/s "4 PFlop/s
100 Tflop/s HPE, ARL
Intel w/3696 nodes, @20 cores
10 Tflop/s
1 Tflop/s My Laptop: 426 Gflop/s
100 Gflop/s
10 Gflop/s
1 Gflop/s / (# 1in 1993 - Thinking Machine CM-5 with 1024 Processors at
-~ | Los Alamos Nat Lab used for nuclear weapons design
100 Mflop/s | 420 MFlop/s.

T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024



Performance Development

1 Eflop/s
100 Pflop/s
10 Pflop/s

1 Pflop/s

100 Tflop/s
10 Tflop/s

1 Tflop/s

100 Gflop/s

10 Gflop/s
1 Gflop/s

1.74 EFlop/s

#1 Computer on Top500 List

Frontier

El Capitan

Summit
— o Fugaku
IrTanAe-ZA
. Sunway
Tita
BlueGene/Q
K Computer
TianHe-1
Jaguar
" BlueGene/t
Earth-Simulator
ASCI Red ASCI White
Num Wind
CPIPACS
XP SR2201
TMC CM-5
1994 1996@998 2000 2002 2004 2006 f 2010 2012 2014 2016 2018 2020 f 2024
Tflops (1012) 103 Pflops (10%°) 0(10 3
] Eflops (1018
Achieved O( 0 ) Achieved ( ) Acf\ie(ved)
ASCI Red 11 Years RoadRunner < 14 Years > Erontier ORNL
Sandia NL Los Alamos NL It’s taking longer to get O(10 3) Frontier
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El Capitan Current #1 System Overview

System Performance Each node has The system includes

: - 11,136 nodes
AMD |nStInCt M|300A 3 - 8-core “Zen 4” CPU dies

6 - AMD 38-core CDNA 3 GPU die
c lex Die (XCD) Chiplets

/228 AMD CDNA™ 3 Compute Units

256MB AMD Infinity Cache™
4 x16 4t Gen Infinity Fabric™ Links
4 x16 PCle® 5

[T

S5
\\\\\\\\\\
-y

silicon interposer

Chiplets
> | A
;;;;
.....
---- Micro-bumps ot - -
C4 bump ¥ ; TSV

silicon interposer

8 physical stacks Y :
AMD Instinct™ MI300A: 128 GB (8H) 3D hybrid bonded

~5.3 TB/s Bandwidth 2.5D silicon interposer

| AMD INSTINCT™ MI300 PRESS AND ANALYST PRE-BRIEF DECK | UNDER EMBARGO UNTIL DECEMBER 6, 2023 See endnotes: MI300-13, MI300-06  together we advance_



Rumored to be 3-4 Exascale Systems in China

* In the US, El Capitan, Frontier, and Aurora systems remain the only
exascale systems on the Top500

* China stopped its submissions to the Top500

Supercomputers 2022 Supercomputers 2025
CHINA 162 us 174
us 125 CHINA 46
GERMANY 34 GERMANY 43
JAPAN 32 JAPAN 39
FRANCE 24 FRANCE 25
UK | 15 uk |13
CANADA | 10 CANADA | 13
ALY 7 ALy | 17
RUSSIA |7 \ \ l Russia |6 I I \

0 50 100 150 0 50 100 150 200



Elon Musk's xAl Colossus System Used for Training Grok,

* Built on Nvidia’s H100
* 67 Tflop/s each 64 bit fl pt
* 990 Tflop/s 16 bit fl pt
» 1980 Tflop/s 8 bit fl pt
64 GPUs + 16 CPUs / rack
* 2 CPUs for 8 GPUs
8 racks / group (512 GPUs)
1,500 racks in total
Integrated by Super Micro
e Ethernet 400 Gb/s

* 200,000 Nvidia’s H100
e 13.4 Eflop/s 64 bit fl pt
* 200 Eflop/s 16 bit fl p .
. .4 Zflop/s 8 bit fl pt 1021 Ops/s A = = 1

* 53-48 Cost Uiakar Devel t: Col T Ty y————
* 300 MW Power nder bevelopment: LOIOSSUS- Irst gigawatt-scale raining ciuster.

200 m? Host 550,000 Nvidia GB200 GPUs; $30-45 billion
1 MW = 750 homes; 300 MW = 225,000 homes (In TN - 1 MW-Year ~ S1M)




Performance and Benchmarking Evaluation Tools

¢ Linpack Benchmark - Longstanding benchmark started in 1979
> Lots of positive features; easy to understand and run; shows trends

¢+ However, much has changed since 1979
» Arithmetic was expensive then and today it is over-provisioned and
inexpensive
¢ Linpack performance of computer systems is no longer
strongly correlated to real application performance
» Linpack benchmark based on dense matrix multiplication
> Not “typical” of scientific HPC applications, distorts the field

¢ Designing a system for good Linpack performance can lead to
design choices that are wrong for today’s applications



Today’s Top HPC Systems Used to do Simulations

PRian ey
.
i

Climate
Combustion
Nuclear Reactors
Catalysis
Electric Grid
Fusion
Stockpile
Supernovae
Materials
Digital Twins
Accelerators

Models in
Catalysis

Usually 3-D PDE’s

* Sparse matrix computations, not dense



hpcg-benchmark.org With Piotr Luszczek and Mike Heroux

HPCG Results; The Other Benchmark

* High Performance Conjugate Gradients (HPCG). \

» Solves Ax=b, A large, sparse, b known, x computed. | ﬁf;\‘

* An optimized implementation of PCG contains essential - .
computational and communication patterns that are prevalent in a N

variety of methods for discretization and numerical solution of PDEs

* Patterns:
* Dense and sparse computations.
* Dense and sparse collectives.
* Multi-scale execution of kernels via MG (truncated) V cycle.
* Data-driven parallelism (unstructured sparse triangular solves).

 Strong verification (via spectral properties of PCG). 27-point stencil operator




HPCG Top 10, June 2025 Dense S

Computer Cores RHPL TOP500 HPCG Fraction of
= S (Pflop/s) | Peak HPCG

DOE/SC/LLNL El Capitan, HPE Cray 255a, AMD 4th Gen EPYC 24C o
1 USA 1.8 GHz, AMD Instinct MI300A, Slingshot-11 11,039,614 1742 1 17.4 0.6%
RIKEN Center for n
2 Computational Science  Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fuijitsu 7,630,848 442 7 16.0 3.0%
Japan —
DOE/SC/ORNL Frontier, HPE Cray Ex235a, AMD 3 EPYC 64C, 2 GHz, <)
3 usa AMD Instinct MI250X, Slingshot-11 9,066,171 1353 2 14.1 0.7%
DOE/SC/ANL Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4 GHz,
4 USA Intel GPU MAX, Slingshot-11 9,264,124 1012 3
EuroHPC/CSC LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz,
o Finland AMD MI250X, Slingshot-11 2,752,704 380 9
CSCS Alps, HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz,
6 Switzerland NVIDIA GH200 Superchip, Slingshot-11 2,121,6000 435 8
Leonardo, BullSequana XH2000, Xeon Platinum 8358
E 32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 1,824,768 241 10
Italy NVIDIA HDR100 Infiniband
AIST ABCI 3 0 HPE Cray XD67O Xeon Platlnum 8558 48C R Y
Th|nk of a race car that has the potential of 200 MPH|but only goes
O usa 2 is6iis NIDIA RGO S 40 6B, Singerotio T 888831 /9| 25
DOE/NNSA/LLNL Sierra, S922L.C, IBM POWERS9 20C 3.1 GHz, Mellanox
1Y USA EDR, NVIDIA Volta V100, IBM 1,572,480 95 20




Floating Point Representation

Sign bit

eee Fp128 ||EET It 0 R

eee Fros [ [EET T R

IEEE FP32 In Traditional Scientific Computing
13453l 5| 10

Can we leverage the short precision in our
“traditional” scientific numerical computations?



Floating Point Representation

Sign bit

eee Fr12s [|EEH I TE R
Traditional Scientific Computing

EoE 8| 23

ieee Frie  [EIIEEN

ML, Neural Networks
Google BF16 In

Can we leverage the short precision in our
“traditional” scientific numerical computations?



Floating Point Representation

Sign bit

eee Fr12s [|EEH I TE R
Traditional Scientific Computing

EoE 8| 23

ieee Frie  [EIIEEN

ML, Neural Networks
Google BF16 In
Forward propagation through a neural network requires
NVIDIA FP8 I higher precision for weights and activations.
NVIDIA FPS In Transformers In contrast, gradients in the backward propagation
(used for updating weights) require a higher dynamic range.

nvioia Fra [|BIfl

Can we leverage the short precision in our
“traditional” scientific numerical computations?



“Responsibly Reckless” Algorithms

= Try a fast algorithm (that may be unstable) and
might fail (but rarely)

 Avoiding Data Movement
 Avoiding Synchronization
» Use Mixed Precision
= Check for instability
= [f needed, recompute with a stable algorithm



c

< WHY MIXED PRECISION? (Less is Faster)

 There are many reasons to consider using mixing
precisions within an application:

» Less Communication
» Reduce memory traffic (from memory to processor)
» Reduce network traffic (from node to node)

= Reduce memory footprint (less data to store*)

= Arithmetic faster (usually factor of 2 or more)
* Lower precision is usually faster than

high precision operations
« Architecture may have an accelerator

= Suitable numerical properties for the algorithm & problems.

The hope is to improve the algorithm performance without
compromising the quality of science



Leveraging Mixed Precision for Linear Algebra

Tdea: use low precision to compute the expensive flops (LU O(n®)) and then iteratively refine
(O(n?)) the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision o(n?)
r =b - Ax (with original A) FP64 precision o(n2)

WHILE || r || not small enough
1. find a correction "z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

» GMRes preconditioned by the LU to solve Az=r Iterative Refinement GMRes lower precision O(n?)
2. X=X+2 FP64 precision O(n?)
3. r=b - Ax (with original A) FP64 precision o(n2)

END

J. Langou, et al., Exploiting the Performance of 32 bit fl-pt
Arithmetic in Obtaining 64 bit Accuracy, in: Proc. of SCO6
Originally motivated by the Sony PlayStation E. Carson & N. Higham, “Accelerating the Solution of Linear

SP peak 205 Gf[op /s. DP peak 15 Gf[op /s Systems by lterative Refinement in Three Precisions SIAM J.
’ Sci. Comput., 40(2), A817-ABAT.

~ A Y A N | e N O N [ N - S | S | B = =~ W = | Yy SO | £+ SO | N NS N N = PN N



Mixed-Precision Iterative Refinement Solver

Performance and Efficiency Improvements Across Three Generations

Mixed-Precision Iterative Refinement Solver
180

160 157
Z 140
120
100
80 75.7
60

40 34.6
16.8
0 o ]

Volta (V100) Ampere (A100) Hopper (H200)

P

3.6X

Performance (TFLO

m FP64 (Native) m FP16+FP64 (MxP)

M FP64 (Native) W FP16 & FP32 & FP64 (MxP)

32k matrix size solution



NVIDIA Blackwell B200 GPU

T

800 - T I 1
— FP64
——FP16->64

700 -

(o2}

(=}

o
T

)]

o

o
T

W

(=}

o
T

Average Power (Watts)
H
o
o

> 8 X Faster

N

(=}

o
T

h

»
< >

> 8 X Less Power
280.0 33.8 TFLOP/s

100 -
448 53 GFLOP/s/Watt

1 | 1 | |

0 1 | | |
0 4 8 12 16 20 24 28 32 36

Time (sec)




HPL-MxP Benchmark Utilizing 16-bit Arithmetic

Generate random linear system Ax=b k‘

Represent the matrix A in low precision (16-bit floating point)
Factor A in lower precision into LU by Gaussian elimination

N

Perform a few iterations of refinement, e.g., GMRES to get accuracy
up to 64-bit floating point

a. Use LU factors for preconditioning

Iterative refinement for dense systems, Ax = b, can work this way.

Compute approximate solution with LU factors in low precision

A S A

L U = lu(A) Oo(n3)
x = U\(L\b) o(n?)
GMRes preconditioned by the LU to solve Ax=b FP64 precision O(n2)

6. Validate the answer is correct: scaled residual small

2 3
7. Compute performance rate as =X =

fime

lHAx=bll L _ a0
[|Al]|lxI| + [Ib]]  ne ~




HPL-MxP
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DOE/SC/LLNL
USA

DOE/SC/ANL
USA

DOE/SC/ORNL
USA

AIST
Japan

EuroHPC/CSC
Finland

RIKEN Center for

Computational Science,

Japan

EuroHPC/CINECA
Italy

Cll, Institute of Science
Japan

NVIDIA
USA

DOE/SC/LBNL/NERSC

1A

El Capitan, HPE Cray 255a, AMD 4th Gen EPYC
24C 1.8 GHz, AMD Instinct MI300A, Slingshot-11

Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4
GHz, Intel GPU MAX, Slingshot-11

Frontier, HPE Cray EX235a, AMD Zen-3 (Milan)
64C 2GHz, AMD MI250X, Slingshot-11

ABCI 3.0, HPE Cray XD670, Xeon Platinum 8558
48C 2.1GHz, NVIDIA H200 SXM5 141 GB,
Infiniband NDR200, HPE

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C
2GHz, AMD MI250X, Slingshot-11

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D

Leonardo, BullSequana XH2000, Xeon Platinum 8358
32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail
NVIDIA HDR100 Infiniband

TSUBAME 4, HPE Cray XD665, AMD EPYC 9654
96C 2.4GHz, NVIDIA H100 SXM5 94 GB, Mellanox
NDR200

Selene, DGX SuperPOD, AMD EPYC 7742 64C
2.25 GHz, Mellanox HDR, NVIDIA A100

Perimutter, HPE Cray EX235n, AMD EPYC 7763

AN N AC NLl—= Olimaalhat AN AN/INIA AMANN

op 10 for June 2025
M“

11,039,616

8,159,232

8,560,640

479,232

2,752,704

7,630,848

1,824,768

172,800

555,520

761.856

1.742

1.012

1.353

0.145

0.380

0.442

0.241

0.035

0.063

0.079

15

10

46

30

25

HPL-MxP
(Eflop/s)

16.7

11.6

11.4

2.36

2.35

2.0

1.8

0.64

0.63

0.59

Speedup

11.5

8.4

16.3

6.2

4.5

7.6

16.2

9.9

7.5



Conventional Computing
FMA Operation

ADD/
SuUB

D




GPUs and Tensor Core Operations
(Think Matrix Multiply)

* Tensor cores are specialized hardware units within GPUs, designed to

accelerate matrix operations
-I.i- ii..

or FP3
INT32 DIAV100 FP DIA A100 Tensor Co




Recent Nvidia GPUs

Figure of Merit
Peak Performance

Operations 2022 2024
Hopper (H200) Blackwell (B200)

FP64 FMA [_ 33.5 Ttlop/s 40 Tflop/s
FP64 Tensor Core 67 Tflop/s 40 Tflop/s ]

FP32 FMA 67 Tflop/s 80 Tflop/s
FP16 Tensor Core 989 Tflop/s 2250 Tflop/s 112X
BF16 Tensor Core 989 Tflop/s 2250 Tflop/s
INT8 Tensor Core 1979 TOP/s 4500 TOP/s

Memory BW 4.8 TB/s 8 TB/s



Opportunity Breeds Innovation

d=a-b+c
= (a0 +2 %a1 + 27 %) - (bo +27°b1 +271%b3) + ¢

_ -8 —16 .. . .
= aobo + 2" "agby +2° agbs Divide the numbers into “slices” of 28

2_8a1b0 + 2_16a1b1

2_16a2b + 2_24a2b1 +2_32a2b2 +C




e The FP32 inputs are decomposed into 3 scaled BF16 components! b (fp32)
a =a0 + 2%,al + 216,22
b =bo + 2-8.bl + 2-16,b2

i

!

I 1
* The multiply-add operation is computed as a sum of 9 scaled partial products b0 (bf16) b1 (bf16) b2 (bf16)

a*b+c-= a0.bo0 + 2-8 ,a0.bl + 2-16,a30.b2
+ 2°8 ,al1.b@ + 2-16,31.b1 + 2-24,al1l.b2

+ 2-16,32.b0 + 2-24,a2.b1 + 2-32,32.b2 + c

* The partial products are computed in the BF16 Tensor cores C (fp32)
e The partial products are scaled appropriately in the CUDA cores
* The tensor cores and CUDA cores work in parallel
. . a0 (bf16)
e The effective FP32 FLOPs is 1/9th that of the BF16 tensor core FLOPs
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Speed-up over native FP64

Potential additional efficiency gains

Performance of Emulated GEMM on B200 GPUs for various number of bits used
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Performance and Perf/Watt: Emulated vs. Native HPL

At Max-P (Performance) Blackwell HPL runs 2.0x faster and 1.7x more efficiently using emulation (56 bits)
At Max-Q (Efficiency) Blackwell HPL runs 2.3x faster and 1.6x more efficiently using emulation (56 bits)
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Analyze Inputs

Fall back to FP64 / Dispatch Emulation

Slice Aand B

Emulated GEMM
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* The Ozaki scheme offers an effective method for computing the product of two
floating-point matrices on hardware using integer matrix-multiplication units.
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and then converted and accumulated in floating-point.

* However, our error analysis shows that the algorithm can become highly inaccurate
if the matrices have entries with vastly different magnitudes, even with many slices.
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