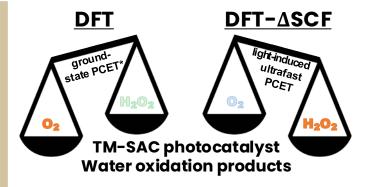
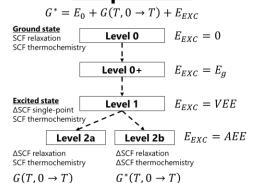
A practical computational protocol for photocatalytic reactions beyond ground-state DFT approximations

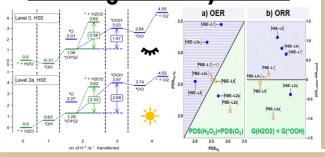

Mateusz Wlazło^a, William A. Goddard III^b, Silvio Osella^a

a. Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland. b. Materials and Process Simulation Center (MSC), California Institute of Technology, MC 139-74, Pasadena CA, 91125, USA.

E-mail: mateusz.wlazlo@cent.uw.edu.pl


Summary

COMPUTATIONAL STUDIES OF HETEROGENEOUS PHOTOCATALYSTS TYPICALLY DISCUSS THE BAND LEVEL ALIGNMENT OBTAINED BY REGULAR DFT, WHICH DOES NOT CAPTURE THE PHYSICS OF LIGHT-DRIVEN PROCESSES. IN A NEW COMPUTATIONAL PROTOCOL, EXCITED STATES ARE EXPLICITLY CONSIDERED IN THE GIBBS FREE ENERGY DIAGRAMS. APPLIED TO PROTOTYPICAL REACTIONS ON A SINGLE-ATOM COCATALYST, THE PROTOCOL ALLOWS FOR THE CORRECT PREDICTION OF REACTION PRODUCTS SEEN IN EXPERIMENT.



*proton-coupled electron transfer

The protocol

Resulting thermodynamics

Excitation energy E_{EXC}

Level 0: No excitation

Level 0+: Electronic band gap

 $E_a = ECBM - EVBM$

Level 1: Vertical excitation energy

(approx. optical band gap), $VEE = E_{0SP}^* - E_0$, SP – single point

Level 2: Adiabatic excitation energy

 $AEE = E_{0\,REL} - E_{0}, \quad \text{REL} - \text{excited state relaxation} \\ \underline{\textbf{HSE06 (hybrid functional)}} \\ \underline{\textbf{PBE (semil ocal functional)}} \\ \underline{\textbf{PBE (semil ocal functional)}} \\ \underline{\textbf{PBE (semil ocal functional)}} \\ \underline{\textbf{Oobs}} \\ \underline{\textbf$

<u>Takeaways</u>

- PBE produces volatile, unphysical excitation energies.
 A hybrid functional should be used whenever possible
- The protocol at Level 2a predicts the correct majority product (H₂O₂) in both directions (H₂O oxidation OER, O₂ reduction ORR)
- A minimal model was used. Extensions are planned for more realism:
 - · environment interaction (solvent)
 - photoelectro f catalysis with constantpotential approach (grand canonical kinetics)

ASCF Method Occupancy selection: SCF (regular DFT): lowest-energy MOs are chosen as occupied according to the aufbau principle ASCF: VBM -> CBM excitation is applied Planewave DFT, HSE06 functional No midgap excitations No midgap excitations ASCF: VBM -> CBM excitation is applied

