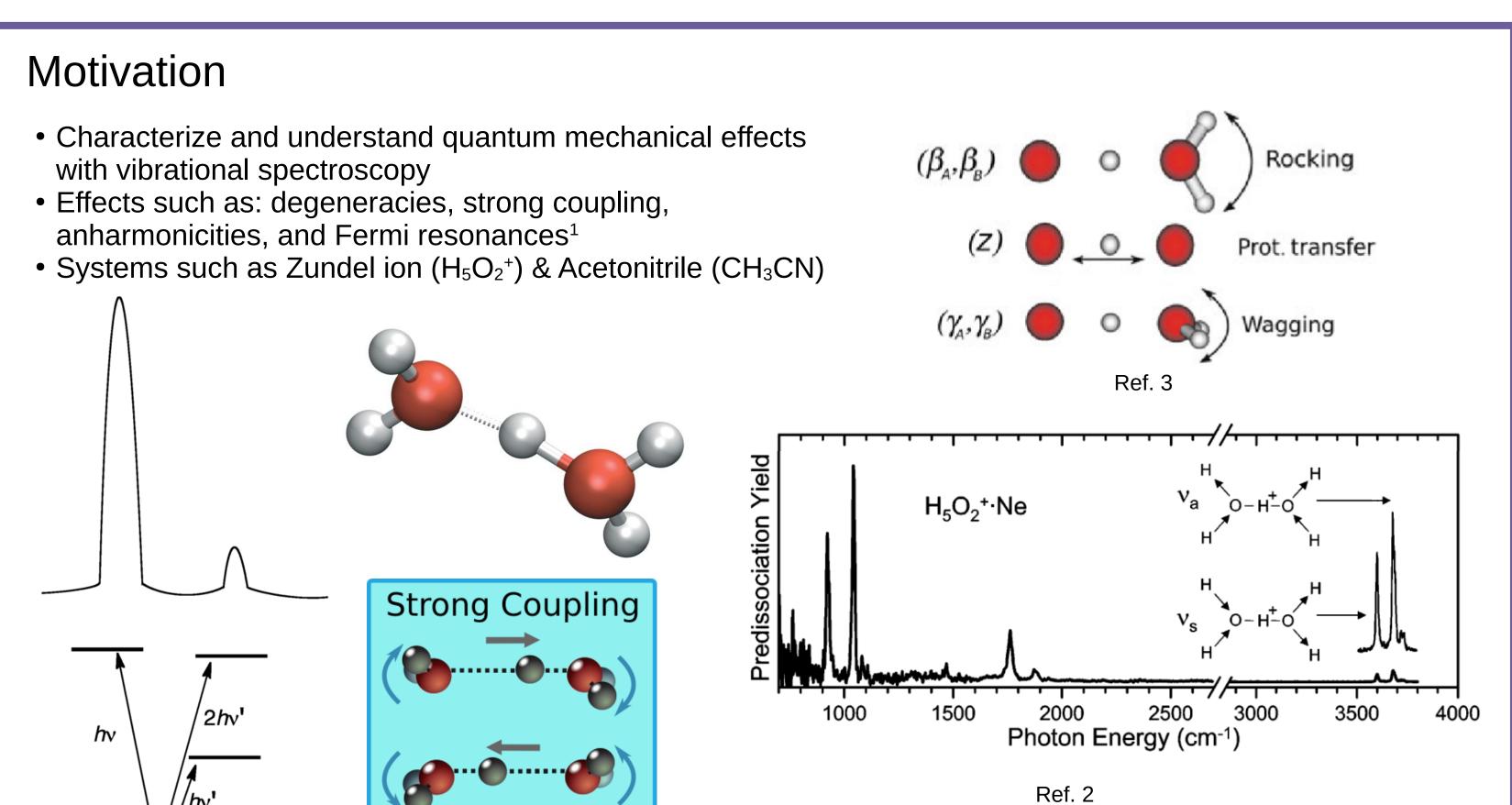


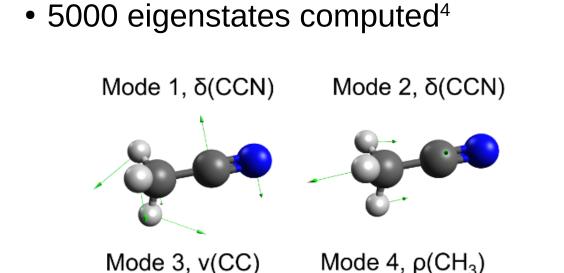
Automatically Assigning Thousands of Vibrational Eigenstates Wolfgang Kern, Henrik R. Larsson

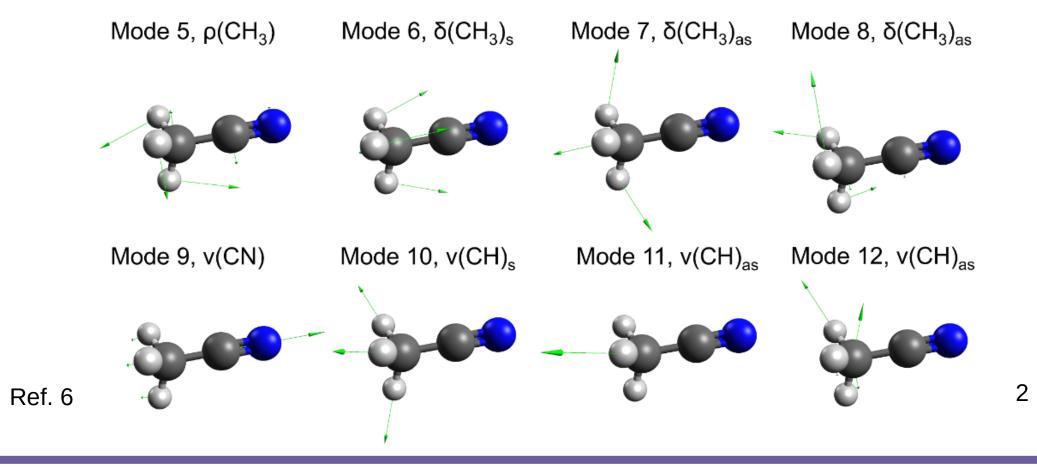
Department of Physics and Department of Chemistry and Biochemistry; University of California, Merced



Acetonitrile

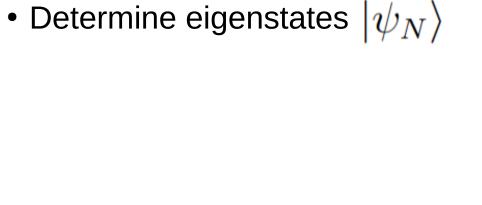
- A prototypical model exemplary of degeneracies, resonances, and couplings⁴
- 12 degrees of freedom
- Choose commonly used Avila and Carrington potential energy surface of the multiple
- surfaces to choose from due to the quartic force field expansion^{5,9}



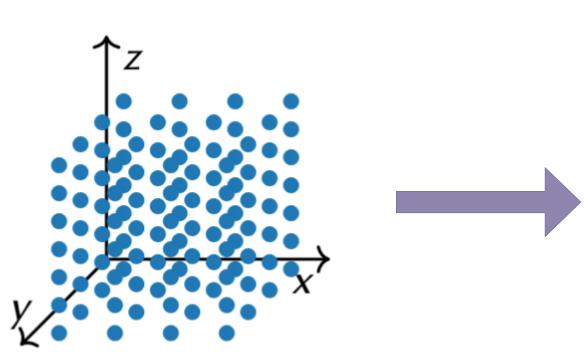


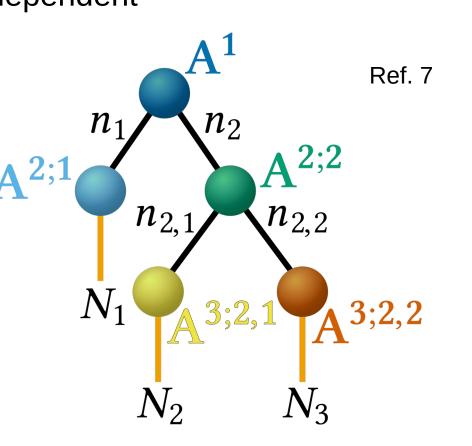
Schrodinger Equation

• Use density matrix renormalization group (DMRG) algorithm to solve time-independent Schrodinger equation using a tree tensor network states (TTNS) ansatz⁴



 $H|\Psi\rangle = E|\Psi\rangle$





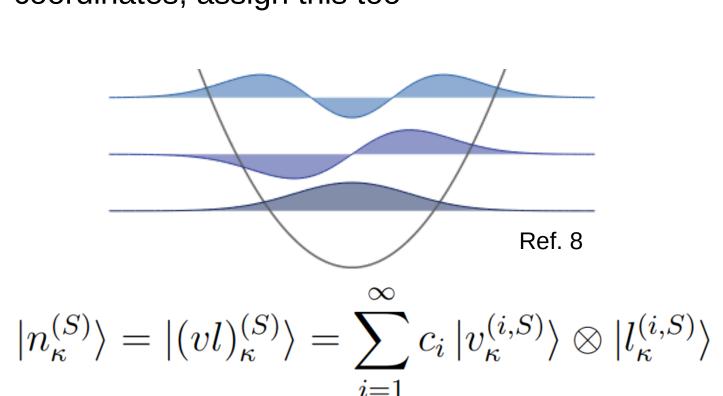
$$\Psi(x_p, y_q, z_r) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \sum_{k=1}^{n_{2,1}} \sum_{l=1}^{n_{2,2}} A_{ij}^1 A_{ip}^{2;1} A_{jkl}^{2;2} A_{kq}^{3;2,1} A_{lr}^{3;2,1}$$

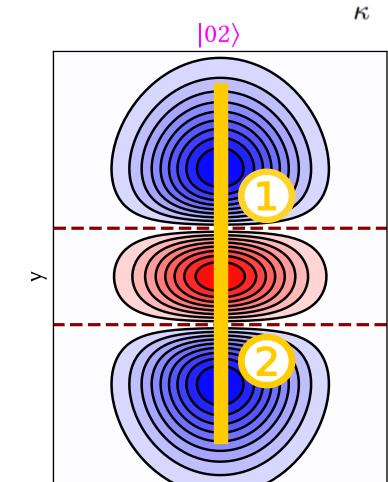
 $|\psi_N\rangle = |n_1\rangle \otimes |n_2\rangle \otimes ... \otimes |n_F\rangle = \bigotimes |n_\kappa\rangle$

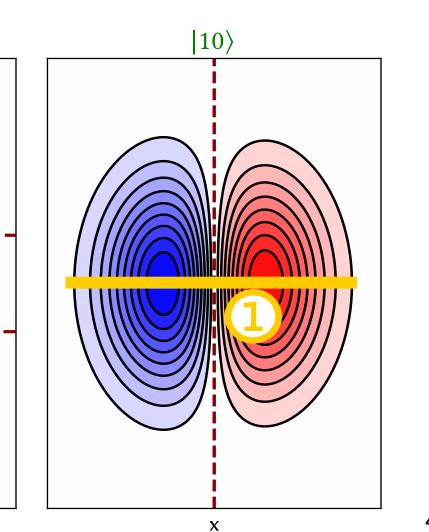
Ex: $|\psi_N\rangle = \bigotimes |n_\kappa\rangle = |02...1\rangle$

Eigenstate Assignment

- Assign principal quantum number based on excitations
- Assignments tell us which modes are active and give deep insights into modal couplings and resonances
- Angular momentum is a key feature of degenerate coordinates, assign this too

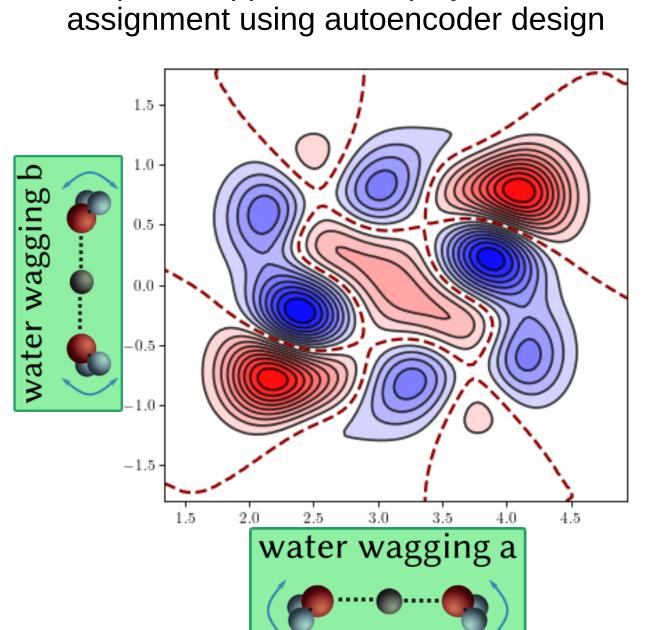


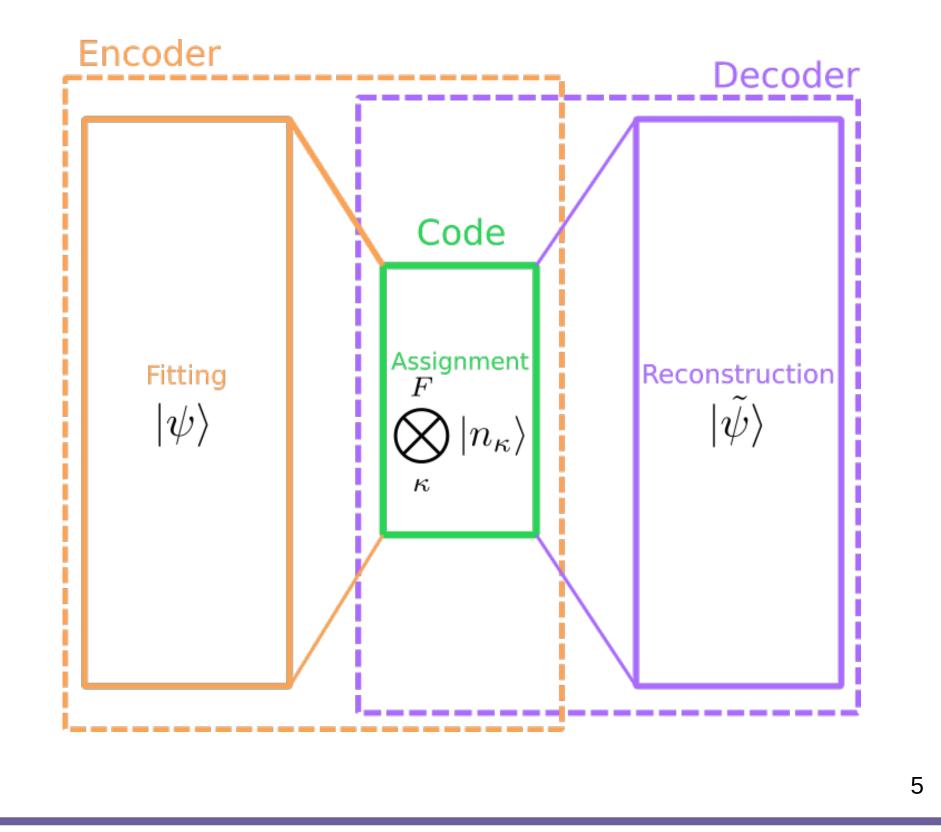




Automated Assignment

- Manual inspection difficult in the case of complicated resonances
- Thousands of states to assign
- Proposed approach: employ automated





Hartree Product Decomposition and Change of Basis

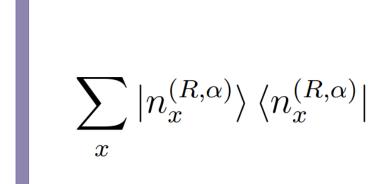
- Decompose eigenstate, ψ_{N_i} into simpler, orthogonal Hartree product states, truncate terms with small contributions
- Discrete variable representation basis, m_{α}

$$|\psi_N\rangle = \sum_R d_R |m_1^{(R)} m_2^{(R)} m_3^{(R)} m_4^{(R)} m_5^{(R)} m_7^{(R)} m_9^{(R)} m_{11}^{(R)}\rangle$$

Change of Basis

Vibrational self-consistent field (VSCF) basis

Non-degenerate



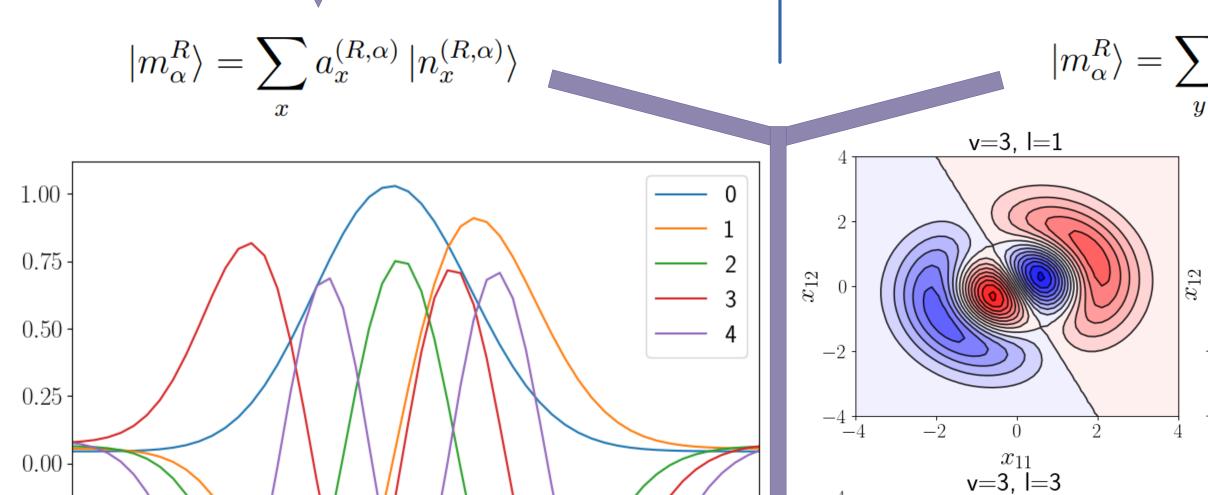
Degenerate

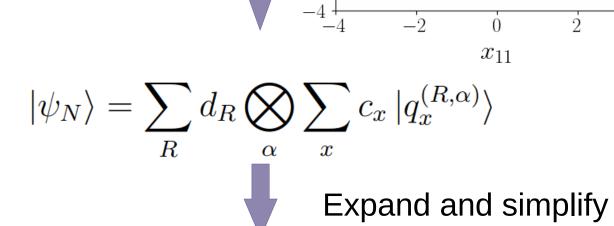
2D isotropic harmonic oscillator basis

v=3, I=-1

 x_{11} v=3, l=-3

$$\sum_{y} |v_{y}^{(R,\alpha)}l_{y}^{(R,\alpha)}\rangle \langle v_{y}^{(R,\alpha)}l_{y}^{(R,\alpha)}|$$





$$|\psi_N\rangle = \sum_{S=1}^{\infty} c_S |n_1^{(S)} n_2^{(S)} n_3^{(S)} n_4^{(S)} (vl)_5^{(S)} (vl)_7^{(S)} (vl)_9^{(S)} (vl)_{11}^{(S)} \rangle$$

Automated Assignment Results

- Produce assignment that factors in principal and angular momentum quantum numbers
- Hartree product decomposition approximates the eigenstate due to truncation
- Assignment confirmed for 50 states \bullet (c_S) is the coefficient, n is the principal quantum number, v is the frequency, l is the angular momentum quantum number, α is the coordinate

Format: $(c_S)nv^l_{\alpha}$

State	Energy (cm ⁻¹)	Assignment	Ref. Assignment ⁹	Ref. Assignment ¹⁰
1	360.990	$(0.7 + 0.2i)v_{11}^{+1} + (0.7i)v_{11}^{-1}$	$v_{11}^{\pm 1}$	v_{11}
2	360.990	$(0.7)v_{11}^{-1} + (-0.2 + 0.7i)v_{11}^{+1}$	$v_{11}^{\pm 1}$	v_{11}
3	723.179	$(0.5 - 0.5i)2v_{11}^{-2} + (-0.4 + 0.6i)2v_{11}^{+2}$	$2v_{11}^{\pm 2}$	$2v_{11}$
4	723.179	$(0.6 + 0.4i)2v_{11}^{+2} + (0.5 + 0.5i)2v_{11}^{-2}$	$\begin{array}{c} v_{11}^{\pm 1} \\ v_{11}^{\pm 1} \\ 2v_{11}^{\pm 2} \\ 2v_{11}^{\pm 2} \end{array}$	$2v_{11}$
5	723.825	$(-0.9 - 0.5i)2v_{11}^0$	$2v_{11}^{0}$	$2v_{11}$
:				
15	1388.967	$(-0.7 - 0.2i)v_3 + (0.5i)v_9^{-1}v_{11}^{+1} + (0.5i)v_9^{+1}v_{11}^{-1}$	v_3	$v_3 + v_9 + v_{11}$
÷				
19	1397.680	$(-0.7 - 0.2i)v_3 + (-0.5i)v_9^{-1}v_{11}^{+1} + (-0.5i)v_9^{+1}v_{11}^{-1}$	$v_9^{\pm 1} + v_{11}^{\mp 1}$	$v_3 + v_9 + v_{11}$
:				
1000	4175.787	$(-0.7i)3v_9^{-3}3v_{11}^{-3} + (0.7 + 0.2i)3v_9^{+3}3v_{11}^{+3}$	N/A	N/A

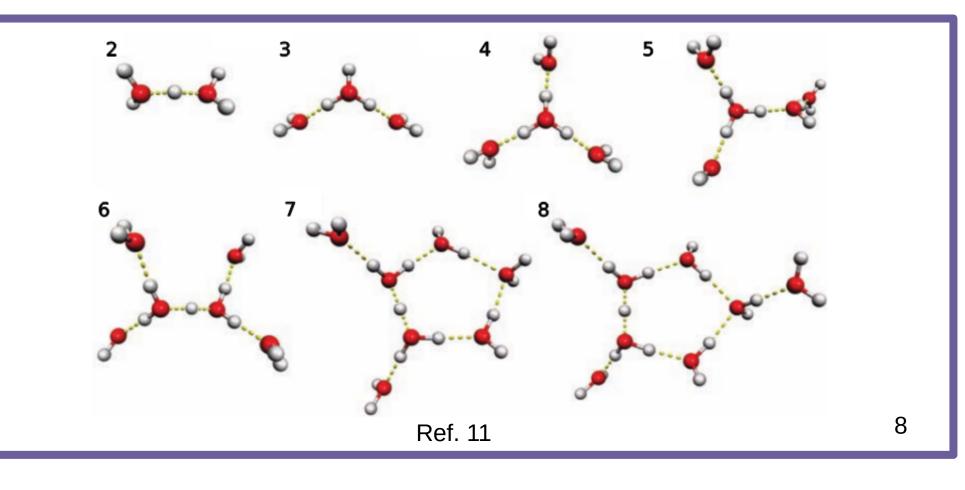
Outlook

-0.25

-0.50

-0.75

- Confirm more results and analyze 5000 states
- Understand main couplings, resonances, anharmonicities, and select zero-order states to create best basis
- Apply to fluxional systems, such as protonated water clusters



References

- 1) D. F. Dinu et al. ACS Physical Chemistry Au, 2024, 4, 679-695.
- 2) L. R. McCunn et al. J. Phys. Chem. B 2008, 112, 321-327. 3) O. Vendrell et al. Molecular Quantum Dynamics: From Theory to Applications, F. Gatti (Ed.), (Springer, 2014).
- 4) H. R. Larsson, J. Phys. Chem. Lett., 2025, 3991-3997. 5) D. Begue et al. J. Phys. Chem. A 2005, 109, 4611-4616.
- 6) R. P. McDonnell et al. J. Phys. Chem. Lett. 2024, 15, 3975-3981.
- 7) H. R. Larsson. Mol. Phys., 2024, 122, e2306881.
- 8) D. Tannor et al. In Advances in Chemical Physics, K.B. Whaley (Ed.), John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Vol. 16, pp 280.
- 9) G. Avila and T. Carrington. J. Chem. Phys. 2011, 134, 054126. 10) H. Hoppe and U. Manthe. J. Chem. Phys. 2024, 160, 034104.
- 11) J. M. Headrick et al. Science, 2005, 308, 1765-1769.

Credits

Thanks to:

- My advisor, Dr. Henrik R. Larsson
- NSF for funding
- The Larsson Group
- University of California, Merced CCP for the presentation opportunity
- You, the viewer

